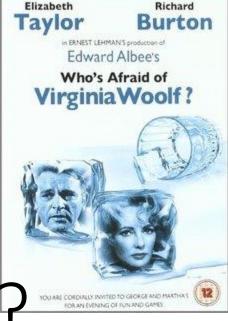
Who's afraid of ... Bayesian non-collapsibility?



timeout.com

Georg Heinze¹, Angelika Geroldinger², Sander Greenland³

¹Medical University of Vienna, Austria

²INSERM, UMRS 1138, CRC, Paris, France

³University of California, Los Angeles, USA

Supported by the Austrian Science Fund FWF, Project I2276-N33

timeout.com

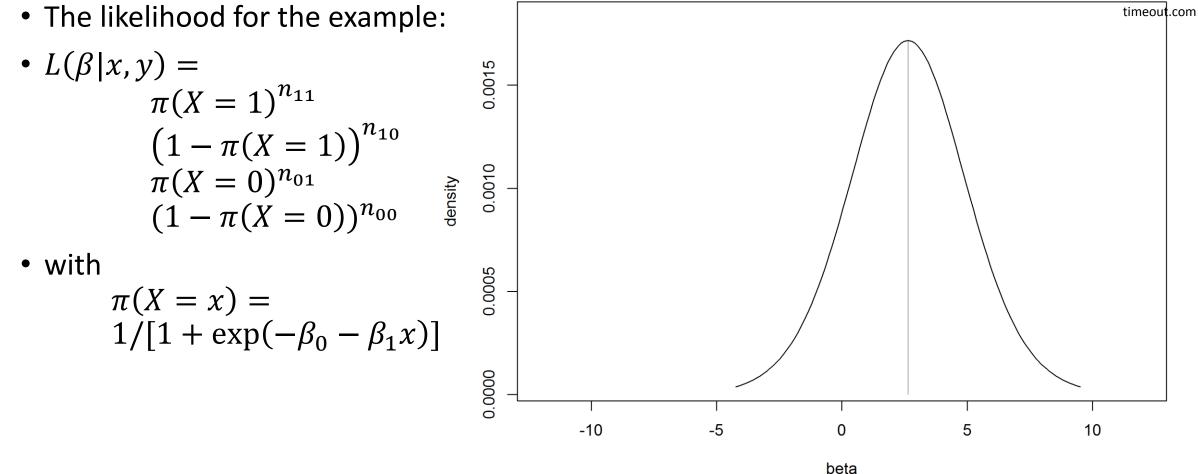
An example

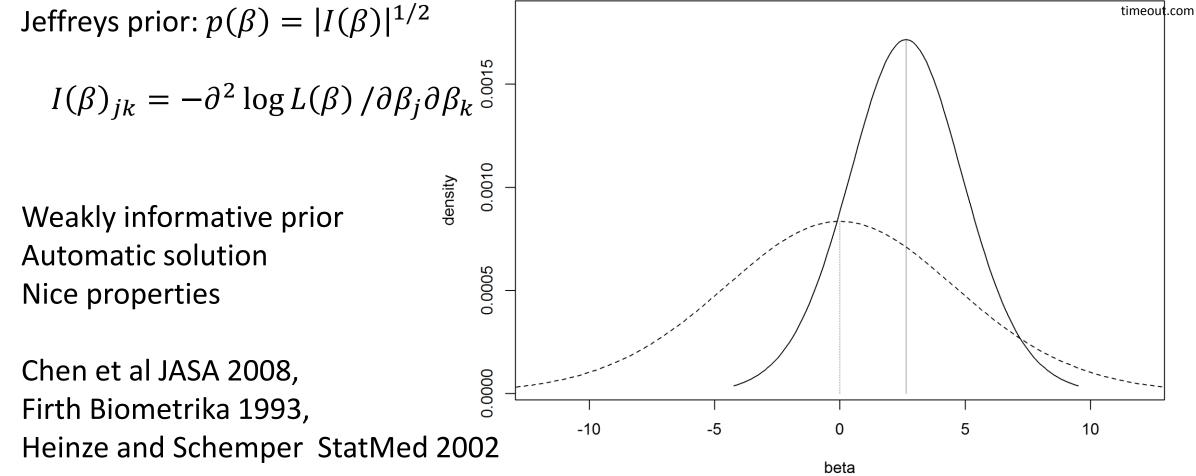
• Simple 2 x 2 table:

	X=0	X=1	
Y=0	7	1	8
Y=1	2	4	6
	9	5	14

• Suppose we are interested in the log odds ratio relating X to Y:

•
$$\beta_1 = \log \frac{n_{11}/n_{10}}{n_{01}/n_{00}} = \log \frac{4/1}{2/7} = 2.6$$

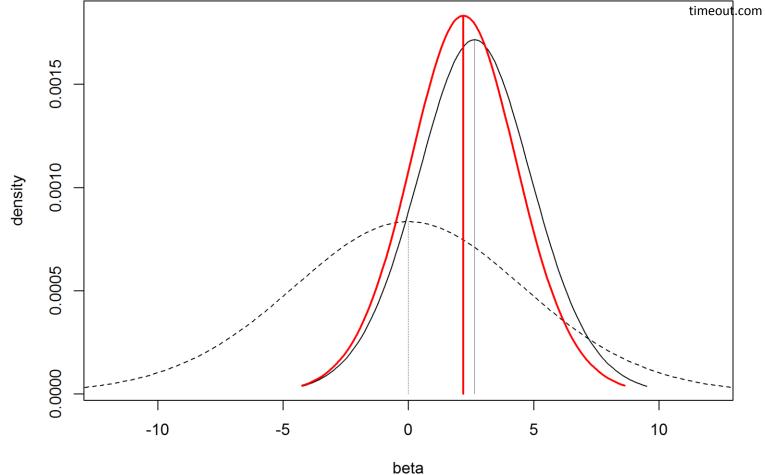




• The posterior:

$$p(\beta|x, y) = p(\beta)L(\beta|x, y)$$

 As expected, the posterior is between the prior and likelihood



Using priors in practice

timeout.com

- General prior
- Ridge regression
 Firth's method/Jeffreys
- Conjugate prior

Derive posterior by simulation (MCMC) Prior can be expressed as likelihood penalty

Such that posterior has same algebraic form as prior, can be expressed as pseudo-observations ("prior data" or *data augmentation prior*) or as a penalty

• In special cases Jeffreys prior reduces to data augmentation

An example

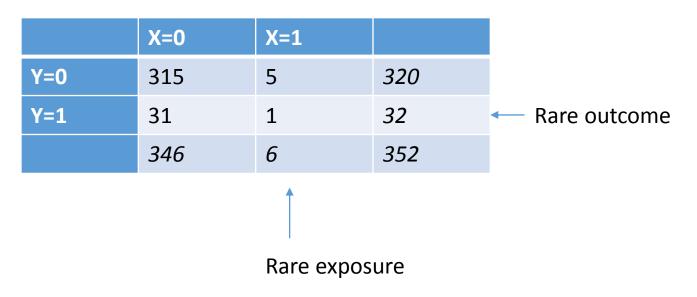
• Augmented 2 x 2 table:

	X=0	X=1	
Y=0	7.5	1.5	9
Y=1	2.5	4.5	7
	10	6	16

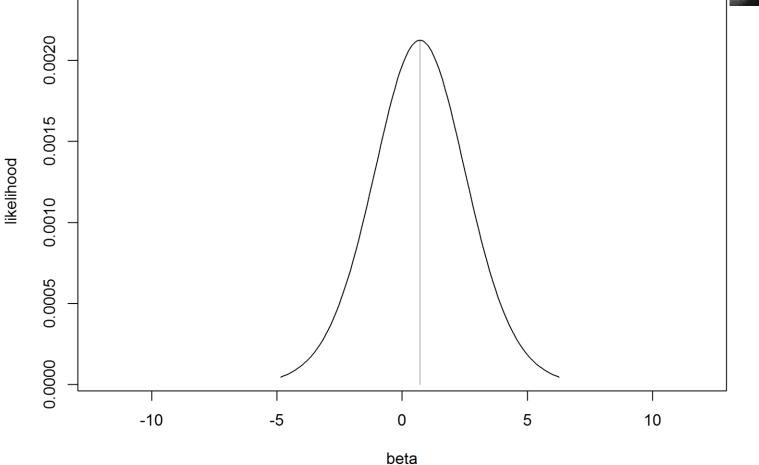
• Maximization of the likelihood of augmented table is now equivalent to finding the posterior mode with original data and Jeffreys prior

Example of Greenland 2010

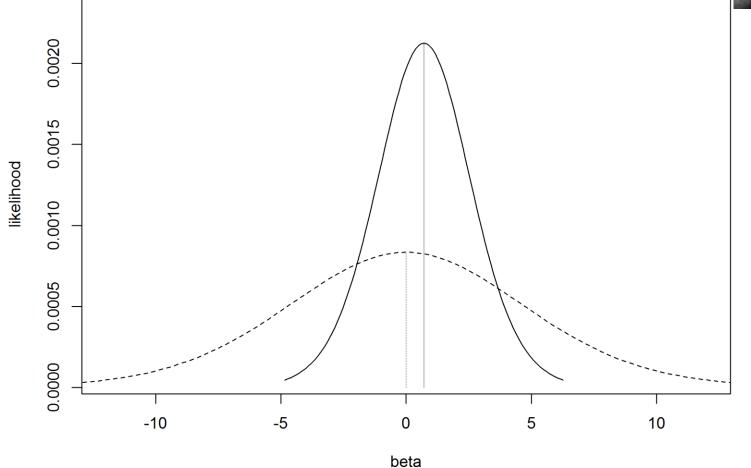
• 2x2 table



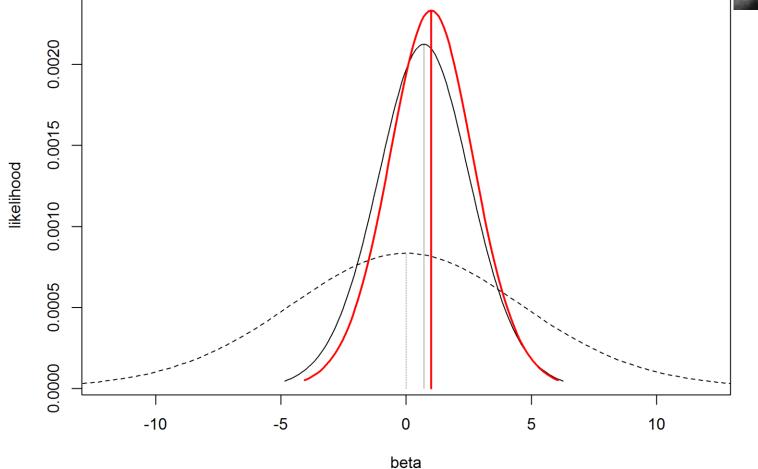
Likelihood, prior, posterior



Likelihood, prior, posterior

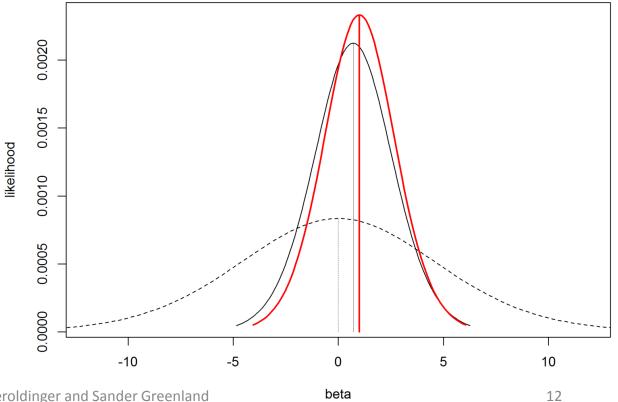


Likelihood, prior, posterior



Bayesian non-collapsibility:

- Prior and likelihood modes do not ,collapse': posterior mode exceeds both
- The posterior mode is more extreme than the ML estimate (likelihood mode)



Georg Heinze, Angelika Geroldinger and Sander Greenland

An even more extreme example from Greenland 2010

timeout.com

• 2x2 table

	X=0	X=1	
Y=0	25	5	30
Y=1	5	1	6
	30	6	36

- Here we immediately see that the odds ratio = 1 ($\beta_1 = 0$)
- But the estimate from augmented data: odds ratio = 1.26 (try it out!)

Greenland, AmStat 2010

Reason for Bayesian non-collapsilibity

timeout.com

- We look at the association of X and Y
- We could treat the source of data as a ,ghost factor' G
- G=0 for original table
- G=1 for pseudo data

this is also the basic idea of Puhr et al's (2017) FLAC method

• We ignore that the conditional association of X and Y given G is different from the marginal association

- We should distinguish BNC in a single data set from a systematic increase in bias of a method (in simulations)
- (This is only of interest to frequentists)
- Simulation of the example:
- Fixed groups x=0 and x=1, P(Y=1|X) as observed in example
- True log OR=0.709

	X=0	X=1	
Y=0	315	5	320
Y=1	31	1	32
	346	6	352

timeout.com

• True value: log OR = 0.709

Parameter	ML	Jeffreys-Firth	
Bias eta_1	*	+18%	
RMSE eta_1	*	0.86	
Bayesian non- collapsibility $oldsymbol{eta}_1$		63.7%	

* Separation causes β_1 to be undefined ($-\infty$) in 31.7% of the cases (Mansournia et al AJE 2017)

- To overcome Bayesian non-collapsibility, Greenland and Mansournia (2015) have proposed not to impose a prior on the intercept
- They suggest a log-F(1,1) prior for all other regression coefficients
- The method can be used with conventional frequentist software because it uses a data-augmentation prior (which can be imposed by adding pseudo-data and replacing the intercept with the source indicator G)

timeout.com

• Re-running the simulation with the log-F(1,1) method yields:

Parameter	ML	Jeffreys-Firth	logF(1,1)
Bias eta_1	*	+18%	
RMSE β_1	*	0.86	
Bayesian non- collapsibility $oldsymbol{eta}_1$		63.7%	0%

* Separation causes β_1 be undefined ($-\infty$) in 31.7% of the cases

timeout.com

• Re-running the simulation with the log-F(1,1) method yields:

Parameter	ML	Jeffreys-Firth	logF(1,1)
Bias eta_1	*	+18%	-52%
RMSE eta_1	*	0.86	1.05
Bayesian non- collapsibility $oldsymbol{eta}_1$		63.7%	0%

* Separation causes β_1 be undefined ($-\infty$) in 31.7% of the cases

Other, more subtle occurrences of Bayesian non-collapsibility

- Ridge regression: normal prior around 0
- usually implies bias towards zero,
- But:
- With correlated predictors with different effect sizes, for some predictors the bias can be away from zero

timeout.com

Simulation of bivariable log reg models

timeout.com

- $X_1, X_2 \sim Bin(0.5)$ with correlation r = 0.8, n = 50
- $\beta_1 = 1.5$, $\beta_2 = 0.1$, ridge parameter λ was optimized by cross-validation

Parameter	True value	ML	Ridge (λ_{opt})	Log- F(1,1)	Jeffreys- Firth
Bias eta_1	1.5	+40% (+9%*)	-26%	-2.5%	+1.2%
RMSE β_1		3.04 (1.02*)	1.01	0.73	0.79
Bias eta_2	0.1	-451% (+16%*)	+48%	+77%	+16%
RMSE β_2		2.95 (0.81*)	0.73	0.68	0.76
Bayesian non-collapsibility $oldsymbol{eta}_2$			25%	28%	23%

*excluding 2.7% separated samples

Confidence intervals

timeout.com

- Appropriate coverage of Wald (-/+ 1.96SE) intervals? Needs unbiased estimators!
- Penalized profile-likelihood (PPL) intervals are advisable instead:
 - They do not depend on the point estimate
 - They provide at least good coverage averaged over the prior that produced the penalty.
 Gustafson and Greenland, 2009
- Penalty can be expressed as prior which does not depend on observed Y for:
 - log F method
 - Jeffreys/Firth in saturated models
- The prior depends on Y (directly or through a tuning parameter):
 - Jeffreys/Firth in non-saturated models: good coverage (by simulation)
 - Ridge: coverage levels violated

Puhr et al, 2017

Conclusion

Bayesian:

- Bayesian non-collapsibility is usually unintended
- Can be avoided in univariable models, but no general rule to avoid it in multivariable models

Frequentist:

- Frequentist looks at repeated-sampling properties (bias, RMSE)
- Likelihood penalization can often decrease RMSE (even with BNC)
- Likelihood penalization ≠ guaranteed shrinkage

timeout.com

References

- Chen MH, Ibrahim JG, Kim S. Properties and Implementation of Jeffreys's Prior in Binomial Regression Models. JASA 2008; **103**:1659-1664.
- Firth D. Bias reduction of maximum likelihood estimates. *Biometrika* 1993; **80**(1):27–38.
- Greenland S. Simpson's paradox from adding constants in contingency tables as an example of Bayesian noncollapsibility. *The American Statistician* 2010; **64**(4):340–344.
- Greenland S, Mansournia MA. Penalization, bias reduction, and default priors in logistic and related categorical and survival regressions.
 Statistics in Medicine 2015; 34(23):3133–3143.
- Gustafson P, Greenland S. Interval Estimation for Messy Observational Data. *Statistical Science* 2009; 24:328-342.
- Heinze G, Schemper M. A solution to the problem of separation in logistic regression. *Statistics in Medicine* 2002; **21**(16):2409–2419.
- Jeffreys H. An Invariant Form of the Prior Probability in Estimation Problems. *Proceedings of the Royal Society of London A* 1946; 196:453-461.
- Mansournia MA, Geroldinger A, Greenland S, Heinze G. Separation in Logistic Regression Causes, Consequences, and Control. American Journal of Epidemiology 2017; early view
- Puhr R, Heinze G, Nold M, Lusa L, Geroldinger A. Firth's logistic regression with rare events: accurate effect estimates and predictions? *Statistics in Medicine* 2017; **36**:2302-2317.